

The Guide to the Lava Diagram

Hi everybody!

As you probably noticed on Problem
Set Nine – we love asking questions about

“The Lava Diagram.”

REG R RE

The Lava Diagram is this Venn diagram
showing the relationships between the
regular, decidable, and recognizable

languages.

ALL

REG R RE

(In case you're wondering, this isn't
really called “The Lava Diagram.” That's
just a fun name some students came up
with a while back. I liked it, so I've

kept using it ever since!)

ALL

REG R RE

Usually, we'll ask a question of the form
“take this group of languages and place
each one of them into the diagram in the

proper place.”

ALL

REG R RE

This question is designed to test your
intuition for what the different classes
of languages mean. The first time you
see a problem like this, it can be tricky!

ALL

REG R RE

However, there are a bunch of useful
intuitions that can help guide you while
working on these problems. We'll go and
talk about them by working through these

four languages here.

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

REG R RE

Let's start by looking at this language
L and seeing where it should go.₁

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

REG R RE

There are a couple of different strategies
you can use to work through these

problems, but the one we find the most
useful is to start from the outside

and work inward.

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

REG R RE

That is, we're going to start off
with L in the ₁ ALL section, then try
to see how far down we can push it

into the Lava Diagram.

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁ (?)

REG R RE

The very first question we should ask
ourselves, therefore, is whether this

language belongs to RE.

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁ (?)

REG R RE

So what exactly is the class RE?

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁ (?)

REG R RE

When we first defined RE, we said that
it was the class of all the recognizable

languages.

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁ (?)

REG R RE

This means that we could try to think about
RE as “the class of problems with

recognizers.”

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁ (?)

REG R RE

However, later on, we saw a different
definition of RE, which I think is actually

a lot more useful here.

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁ (?)

REG R RE

Specifically, we saw that RE is the class
of languages that have verifiers.

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁ (?)

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

REG R RE

If you think back to what a verifier for
a language is supposed to do, at a

high level, it's really an “answer checker.”

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁ (?)

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

REG R RE

Specifically, a verifier is supposed to take
in a string and a certificate, then see
whether the certificate proves whether

the string is in the language.

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁ (?)

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

REG R RE

In that sense, you can think of the RE
languages this way: they're the languages
where, for any string in the language,

there's some way to prove that the string
is indeed in the language.

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁ (?)

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

REG R RE

Turns out, this provides an amazingly
good intuition for the RE languages. A

language is in RE if and only if, whenever
you have a string in the language, there's
some way to prove it's in the language.

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁ (?)

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

REG R RE

We're going to use this intuition a ton
when working through these problems.
It's definitely worth making a note of

this technique!

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁ (?)

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

REG R RE

So let's go focus our attention to the
particular language L we have right₁

now.

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁ (?)

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

REG R RE

Imagine you have a string in L . What₁

does that string look like?

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁ (?)

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

REG R RE

Well, according to the definition of the
language, any string in L must encode₁

a TM that accepts at least two strings.

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁ (?)

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

REG R RE

We can think of L as₁

“the language of TMs that accept at least
two strings.”

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁ (?)

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

REG R RE

With that in mind, let's think about
whether this language is in RE or not.

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁ (?)

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

REG R RE

Let's imagine that we have a random TM
and we are convinced that it accepts at

least two strings.

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁ (?)

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

REG R RE

Is there something we could do to prove
that it accepts at least two strings?

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁ (?)

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

REG R RE

In other words, if we came across
someone who was skeptical that the machine

actually accepts at least two strings,
could we convince them that the machine
indeed does accept at least two strings?

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁ (?)

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

REG R RE

In this case, the answer is yes!

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁ (?)

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

REG R RE

If we happened to know at least two
 strings that the machine accepted, we
could just run the machine on both

those strings and watch it accept them.

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁ (?)

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

REG R RE

Anyone who was initially skeptical that
our TM accepted at least two strings

would definitely be convinced at that point.
They just watched the TM accept at

least two strings!

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁ (?)

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

REG R RE

So, going off this intuition, we can be
reasonably confident that the language L₁

is indeed in RE.

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁ (?)

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

REG R RE

At this point we haven't ruled out the
possibility that it's also in R or is

regular, but it's almost certainly not
outside RE.

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁ (?)

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

REG R RE

Although the question here was just to
go and place L , it's not a bad idea₁

to think about how we'd actually go
and build a verifier for L . ₁

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁ (?)

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

REG R RE

The idea would go something like this.

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁ (?)

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

REG R RE

We can prove that our TM M accepts
at least two strings by telling our verifier
what two strings M is going to accept.

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁ (?)

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

REG R RE

To ensure that our verifier doesn't go
into an infinite loop (remember – verifiers
aren't allowed to loop!), we can also

give the verifier the number of steps it's
going to take for M to accept.

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁ (?)

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

REG R RE

So the verifier would take in as input
the TM M, two strings w and w , and a₁ ₂

number of steps n, and could run M on
the stings w and w for up to n steps. ₁ ₂

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁ (?)

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

REG R RE

If M accepts both w and w within that₁ ₂

many steps, then the verifier is convinced
that M definitely accepts at least two

strings.

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁ (?)

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

REG R RE

If that doesn't happen, the verifier
isn't sure of what the answer is. Maybe M
does accept two strings and we gave the
verifier the wrong strings, or maybe we
gave it the wrong number of steps.

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁ (?)

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

REG R RE

If you wanted to write this up as a
formal proof, it's a good exercise! For

now, though, we're just going to continue
working through figuring out where this
language goes on the Lava Diagram.

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁ (?)

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

REG R RE

Okay! So at this point we know that
L is in ₁ RE.

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁ (?)

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

REG R RE

The next step is to determine whether
it's also in class R.

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁ (?)

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

REG R RE

So what exactly is the class R?

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁ (?)

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

REG R RE

Well, we defined it to be the class of
all decidable languages.

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁ (?)

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

REG R RE

That means that it's the class of all
languages that have deciders.

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁ (?)

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

R: Languages with Deciders

In addition to the RE requirements,
given any string w ∉ L, could you
prove that w ∉ L?

REG R RE

You can reason about whether a language
belongs to class R by thinking about whether

you could build a decider for it.

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁ (?)

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

R: Languages with Deciders

In addition to the RE requirements,
given any string w ∉ L, could you
prove that w ∉ L?

REG R RE

There's an alternative perspective that
I think is a bit easier to use, though.

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁ (?)

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

R: Languages with Deciders

In addition to the RE requirements,
given any string w ∉ L, could you
prove that w ∉ L?

REG R RE

On Problem Set Nine, there’s a problem
entitled “Double Verification.”

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁ (?)

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

R: Languages with Deciders

In addition to the RE requirements,
given any string w ∉ L, could you
prove that w ∉ L?

REG R RE

We asked you to prove this statement:

If L ∈ RE and L ∈ RE, then L ∈ R.

What exactly does that mean?

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁ (?)

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

R: Languages with Deciders

In addition to the RE requirements,
given any string w ∉ L, could you
prove that w ∉ L?

REG R RE

If L ∈ RE and L ∈ RE, then L ∈ R.

From what we've talked about so far,
you probably have a slightly better feel for

what it means for L to be in RE.

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁ (?)

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

R: Languages with Deciders

In addition to the RE requirements,
given any string w ∉ L, could you
prove that w ∉ L?

REG R RE

If L ∈ RE and L ∈ RE, then L ∈ R.

But what exactly does it mean for the
complement of L to be in RE?

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁ (?)

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

R: Languages with Deciders

In addition to the RE requirements,
given any string w ∉ L, could you
prove that w ∉ L?

REG R RE

If L ∈ RE and L ∈ RE, then L ∈ R.
Going off of our proof-based intuition,
if the complement of L is in RE, it means
that given any string w that is not in L,
there's a way to prove it’s not in L.

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁ (?)

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

R: Languages with Deciders

In addition to the RE requirements,
given any string w ∉ L, could you
prove that w ∉ L?

REG R RE

This turns out to be a great way of
intuiting the class R. A language belongs
to R if it's in RE, and for any string

that isn't in the language, there's a way
to prove it's not in the language.

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁ (?)

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

R: Languages with Deciders

In addition to the RE requirements,
given any string w ∉ L, could you
prove that w ∉ L?

REG R RE

(Although we only had you prove the
forward direction of the implication in the
Double Verification problem, turns out
the reverse direction holds as well. This
gives an exact characterization of R!)

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁ (?)

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

R: Languages with Deciders

In addition to the RE requirements,
given any string w ∉ L, could you
prove that w ∉ L?

REG R RE

Now, let's jump back to our particular
language L here and use this₁

intuition to think about whether or not
it belongs to class R.

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁ (?)

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

R: Languages with Deciders

In addition to the RE requirements,
given any string w ∉ L, could you
prove that w ∉ L?

REG R RE

So imagine that you have some string
that isn't in L .₁

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁ (?)

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

R: Languages with Deciders

In addition to the RE requirements,
given any string w ∉ L, could you
prove that w ∉ L?

REG R RE

In other words, imagine you have
TM M where it’s not the case that

M accepts at least two strings.

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁ (?)

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

R: Languages with Deciders

In addition to the RE requirements,
given any string w ∉ L, could you
prove that w ∉ L?

REG R RE

That means that M must accept either
no strings at all or just one string.

(Do you see why?)

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁ (?)

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

R: Languages with Deciders

In addition to the RE requirements,
given any string w ∉ L, could you
prove that w ∉ L?

REG R RE

So now the question is the following:
if you have a TM that accepts either no
strings or just one string, could you
prove it to someone who was skeptical

but honest?

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁ (?)

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

R: Languages with Deciders

In addition to the RE requirements,
given any string w ∉ L, could you
prove that w ∉ L?

REG R RE

This is going to be a bit tricky.

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁ (?)

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

R: Languages with Deciders

In addition to the RE requirements,
given any string w ∉ L, could you
prove that w ∉ L?

REG R RE

IF you want to convince someone that
M only accepts at most one string, you
need to convince them that out of the

infinitely many strings that are out
there, the TM accepts at most one.

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁ (?)

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

R: Languages with Deciders

In addition to the RE requirements,
given any string w ∉ L, could you
prove that w ∉ L?

REG R RE

As we've seen before, though, we know
that the only general way to find out what
a TM will do on a string is to run the

TM on that string and see what happens.

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁ (?)

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

R: Languages with Deciders

In addition to the RE requirements,
given any string w ∉ L, could you
prove that w ∉ L?

REG R RE

So if we want to convince someone that
a TM doesn't accept infinitely many
different strings, we're out of luck!
In the general case, we'd have to run

the TM on all those strings…

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁ (?)

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

R: Languages with Deciders

In addition to the RE requirements,
given any string w ∉ L, could you
prove that w ∉ L?

REG R RE

… and given that there are infinitely
many of them, we'll never finish

checking them all.

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁ (?)

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

R: Languages with Deciders

In addition to the RE requirements,
given any string w ∉ L, could you
prove that w ∉ L?

REG R RE

So, based on the intuition that a
language is in R if we can always
prove it when strings aren't in the

language, we'd suspect that this language
is not in R.

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

R: Languages with Deciders

In addition to the RE requirements,
given any string w ∉ L, could you
prove that w ∉ L?

REG R RE

To actually go and prove this, we could
use some kind of self-reference trick

and build a machine that asks whether it's
going to accept at least two strings,

then does the opposite.

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

R: Languages with Deciders

In addition to the RE requirements,
given any string w ∉ L, could you
prove that w ∉ L?

REG R RE

In fact, that's such a good exercise that
you should stop reading this and go do it
right now. The Guide to Self-Reference

might help you there.

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

R: Languages with Deciders

In addition to the RE requirements,
given any string w ∉ L, could you
prove that w ∉ L?

REG R RE

So did you go prove that yet? If not,
you really should think about doing so.

It's a great exercise!

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

R: Languages with Deciders

In addition to the RE requirements,
given any string w ∉ L, could you
prove that w ∉ L?

REG R RE

So at this point we've got this language
settled in the right place. It's in RE,

but it's not in R.

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

R: Languages with Deciders

In addition to the RE requirements,
given any string w ∉ L, could you
prove that w ∉ L?

REG R RE

Before we move on to the next language,
I wanted to take a minute to address a
common question we get on problems

like these.

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

R: Languages with Deciders

In addition to the RE requirements,
given any string w ∉ L, could you
prove that w ∉ L?

REG R RE

If you look at the description of the
language, you can see that it says

something about TMs that accept at least
two strings.

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

R: Languages with Deciders

In addition to the RE requirements,
given any string w ∉ L, could you
prove that w ∉ L?

REG R RE

A lot of people ask – “Isn't it really
easy to build a TM that accepts at least

two strings? So shouldn't this be
decidable? Or even regular?”

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

R: Languages with Deciders

In addition to the RE requirements,
given any string w ∉ L, could you
prove that w ∉ L?

REG R RE

The answer to that question is “yes,
and no.”

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

R: Languages with Deciders

In addition to the RE requirements,
given any string w ∉ L, could you
prove that w ∉ L?

REG R RE

It is indeed possible to build a TM
that accepts at least two strings.

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

R: Languages with Deciders

In addition to the RE requirements,
given any string w ∉ L, could you
prove that w ∉ L?

REG R RE

We can do that by just building a TM
that accepts everything, for example.

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

R: Languages with Deciders

In addition to the RE requirements,
given any string w ∉ L, could you
prove that w ∉ L?

REG R RE

But notice that this problem isn't asking
whether you can build this machine. It's
a question about the language of all
TMs with this particular property.

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

R: Languages with Deciders

In addition to the RE requirements,
given any string w ∉ L, could you
prove that w ∉ L?

REG R RE

In that sense, the question is really asking
“how hard is it to tell whether a random
TM actually does accept at least two

strings?”

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

R: Languages with Deciders

In addition to the RE requirements,
given any string w ∉ L, could you
prove that w ∉ L?

REG R RE

That question – the question of checking
whether a TM has some behavior – is
typically much, much harder than the
problem of building a TM with that

behavior.

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

R: Languages with Deciders

In addition to the RE requirements,
given any string w ∉ L, could you
prove that w ∉ L?

REG R RE

Keep that in mind going forward – the
question is to determine whether an

arbitrary string is in the language, not
to try to find a string that happens to

be in the language.

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

R: Languages with Deciders

In addition to the RE requirements,
given any string w ∉ L, could you
prove that w ∉ L?

REG R RE

And with that said, let's move on to
the second language!

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

R: Languages with Deciders

In addition to the RE requirements,
given any string w ∉ L, could you
prove that w ∉ L?

REG R RE

Before I talk about this particular
problem, take a few minutes to think

about where you believe this should go in
the Lava Diagram. Once you've done
that, let's rejoin and keep talking.

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

R: Languages with Deciders

In addition to the RE requirements,
given any string w ∉ L, could you
prove that w ∉ L?

REG R RE

Did you actually go and think about it?
If not, you should. Like, seriously. It's

good practice.

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

R: Languages with Deciders

In addition to the RE requirements,
given any string w ∉ L, could you
prove that w ∉ L?

REG R RE

Okay! So now you've given it your best
shot. Let's see where this one goes.

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

R: Languages with Deciders

In addition to the RE requirements,
given any string w ∉ L, could you
prove that w ∉ L?

REG R RE

As before, we're going to start on the
outside and move inward. Initially, we

won't make any assumptions about where
this particular language goes.

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

R: Languages with Deciders

In addition to the RE requirements,
given any string w ∉ L, could you
prove that w ∉ L?

L₂ (?)

REG R RE

Our first question is to determine whether
this language belongs to RE or not.

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

R: Languages with Deciders

In addition to the RE requirements,
given any string w ∉ L, could you
prove that w ∉ L?

L₂ (?)

REG R RE

To do so, we're going to ask whether,
given a random string in the language, it's

possible to prove it's in the language.

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

R: Languages with Deciders

In addition to the RE requirements,
given any string w ∉ L, could you
prove that w ∉ L?

L₂ (?)

REG R RE

This is the language of all
TMs that accept exactly two strings.

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

R: Languages with Deciders

In addition to the RE requirements,
given any string w ∉ L, could you
prove that w ∉ L?

L₂ (?)

REG R RE

So now we ask – if had a TM and you knew
for a fact that it accepted exactly two

strings, could you prove it?

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

R: Languages with Deciders

In addition to the RE requirements,
given any string w ∉ L, could you
prove that w ∉ L?

L₂ (?)

REG R RE

This turns out to be a lot harder than
just checking if a TM accepts at least

two strings.

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

R: Languages with Deciders

In addition to the RE requirements,
given any string w ∉ L, could you
prove that w ∉ L?

L₂ (?)

REG R RE

To show that a TM accepts exactly two
strings, we need to show that it accepts
at least two strings (that's something
we can prove), but also that it doesn't

accept anything else.

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

R: Languages with Deciders

In addition to the RE requirements,
given any string w ∉ L, could you
prove that w ∉ L?

L₂ (?)

REG R RE

The problem is that to show that a TM
accepts a particular set of strings and
nothing else, we need to prove that the
TM doesn't accept any strings outside of

that set.

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

R: Languages with Deciders

In addition to the RE requirements,
given any string w ∉ L, could you
prove that w ∉ L?

L₂ (?)

REG R RE

That in turn would require us – in the
general case – to run the TM on infinitely
many strings to see what happens, since
there's no general way to see what a TM

does other than to run it.

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

R: Languages with Deciders

In addition to the RE requirements,
given any string w ∉ L, could you
prove that w ∉ L?

L₂ (?)

REG R RE

So at least, intuitively, this doesn't seem
like it's going to be possible to do.

Even if we know that TM accepts exactly
two strings, it's unclear how we'd prove

that to someone.

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

R: Languages with Deciders

In addition to the RE requirements,
given any string w ∉ L, could you
prove that w ∉ L?

L₂ (?)

REG R RE

This gives us some justification to guess
that this language is probably not going

to be in RE.

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

R: Languages with Deciders

In addition to the RE requirements,
given any string w ∉ L, could you
prove that w ∉ L?

L₂

REG R RE

So there you have it – this language
is not even in RE.

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

R: Languages with Deciders

In addition to the RE requirements,
given any string w ∉ L, could you
prove that w ∉ L?

L₂

REG R RE

That might seem pretty surprising, given
how similar this language looks to L .₁

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

R: Languages with Deciders

In addition to the RE requirements,
given any string w ∉ L, could you
prove that w ∉ L?

L₂

REG R RE

I chose this particular example
because it highlights a key point when
thinking about languages: don't try to
place a language in the diagram just

based on its description.

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

R: Languages with Deciders

In addition to the RE requirements,
given any string w ∉ L, could you
prove that w ∉ L?

L₂

REG R RE

To figure out where something goes,
you need to think about in terms of

provability. Ultimately, it's this – rather
than the way it's written – that makes

things hard.

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

R: Languages with Deciders

In addition to the RE requirements,
given any string w ∉ L, could you
prove that w ∉ L?

L₂

REG R RE

With that said, let's go take a look at
the next language in our list.

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

R: Languages with Deciders

In addition to the RE requirements,
given any string w ∉ L, could you
prove that w ∉ L?

L₂

REG R RE

As before, we'll start by placing it
outside of RE and try to think about
pushing it as far down as possible.

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

R: Languages with Deciders

In addition to the RE requirements,
given any string w ∉ L, could you
prove that w ∉ L?

L₂

L₃ (?)

REG R RE

As before, we first ask whether this
language happens to be in RE.

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

R: Languages with Deciders

In addition to the RE requirements,
given any string w ∉ L, could you
prove that w ∉ L?

L₂

L₃ (?)

REG R RE

So let's imagine we have an
arbitrary string from this language.

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

R: Languages with Deciders

In addition to the RE requirements,
given any string w ∉ L, could you
prove that w ∉ L?

L₂

L₃ (?)

REG R RE

That means that we have a string
of the form anbn with at least

2,002 characters in it (at least 1,001 a's
and at least 1,001 b's.)

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

R: Languages with Deciders

In addition to the RE requirements,
given any string w ∉ L, could you
prove that w ∉ L?

L₂

L₃ (?)

REG R RE

So – given that string, could we prove
to someone that the string was indeed

in the language?

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

R: Languages with Deciders

In addition to the RE requirements,
given any string w ∉ L, could you
prove that w ∉ L?

L₂

L₃ (?)

REG R RE

Sure! We could just count up the a's,
count up the b's, show that there are
the same number, and show that there's

at least 1,000.

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

R: Languages with Deciders

In addition to the RE requirements,
given any string w ∉ L, could you
prove that w ∉ L?

L₂

L₃ (?)

REG R RE

Next, let's ask the follow-up question
to see if L is in ₃ R. If we had a string
not in the language, could we prove it?

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

R: Languages with Deciders

In addition to the RE requirements,
given any string w ∉ L, could you
prove that w ∉ L?

L₂

L₃ (?)

REG R RE

There are a lot of cases to check if the
string ends up not being in the language.

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

R: Languages with Deciders

In addition to the RE requirements,
given any string w ∉ L, could you
prove that w ∉ L?

L₂

L₃ (?)

REG R RE

It could not have the form anbn, or it
could have too few a's and b's in it,

for example.

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

R: Languages with Deciders

In addition to the RE requirements,
given any string w ∉ L, could you
prove that w ∉ L?

L₂

L₃ (?)

REG R RE

However, all of those cases are really
easy to check. We either show that it has
the wrong form or show that it doesn't

have enough characters in it.

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

R: Languages with Deciders

In addition to the RE requirements,
given any string w ∉ L, could you
prove that w ∉ L?

L₂
L₃ (?)

REG R RE

Okay, things are looking good here!
We know that this language is decidable.

As our final step, we need to ask
whether or not it's regular.

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

R: Languages with Deciders

In addition to the RE requirements,
given any string w ∉ L, could you
prove that w ∉ L?

L₂
L₃ (?)

REG R RE

So what exactly makes a language regular?

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

R: Languages with Deciders

In addition to the RE requirements,
given any string w ∉ L, could you
prove that w ∉ L?

L₂
L₃ (?)

REG R RE

We have a ton of different definitions for
regular languages – they're the languages

of DFAs, NFAs, and regexes.

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

R: Languages with Deciders

In addition to the RE requirements,
given any string w ∉ L, could you
prove that w ∉ L?

L₂
L₃ (?)

REG R RE

But, as with R and RE, I think there's a
much better intuition to have about the
regular languages that makes it easier
to see whether something is regular.

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

R: Languages with Deciders

In addition to the RE requirements,
given any string w ∉ L, could you
prove that w ∉ L?

L₂
L₃ (?)

REG R RE

Specifically, the regular languages really
correspond to problems that you can

solve in finite memory. (This is the same
intuition we used to find nonregular

languages for the first time.)

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

R: Languages with Deciders

In addition to the RE requirements,
given any string w ∉ L, could you
prove that w ∉ L?

L₂
L₃ (?)

REG: Problems Solvable
with Finite Memory

Are there are finitely
many cases to check?

REG R RE

If you're trying to determine whether
 a decidable language happens to be

regular, think about how much
information you need to remember

about the input string.

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

R: Languages with Deciders

In addition to the RE requirements,
given any string w ∉ L, could you
prove that w ∉ L?

L₂
L₃ (?)

REG: Problems Solvable
with Finite Memory

Are there are finitely
many cases to check?

REG R RE

If you only need to remember one of
finitely many pieces of information, then
the language is almost certainly regular,
even if you can't envision a clean DFA

or regex for it.

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

R: Languages with Deciders

In addition to the RE requirements,
given any string w ∉ L, could you
prove that w ∉ L?

L₂
L₃ (?)

REG: Problems Solvable
with Finite Memory

Are there are finitely
many cases to check?

REG R RE

So let's think about this here. What
information do we need to keep

track of?

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

R: Languages with Deciders

In addition to the RE requirements,
given any string w ∉ L, could you
prove that w ∉ L?

L₂
L₃ (?)

REG: Problems Solvable
with Finite Memory

Are there are finitely
many cases to check?

REG R RE

Fundamentally, we'd have to keep track
of how many a's we've seen, since if
we can't do that, we can't match it

against the number of b's.

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

R: Languages with Deciders

In addition to the RE requirements,
given any string w ∉ L, could you
prove that w ∉ L?

L₂
L₃ (?)

REG: Problems Solvable
with Finite Memory

Are there are finitely
many cases to check?

REG R RE

That's a problem: there are infinitely
many possible choices for the number of
a's that we'd have to remember, and
we can't remember which number we've

seen with finitely many states!

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

R: Languages with Deciders

In addition to the RE requirements,
given any string w ∉ L, could you
prove that w ∉ L?

L₂
L₃ (?)

REG: Problems Solvable
with Finite Memory

Are there are finitely
many cases to check?

REG R RE

So this gives us the intuition that L is₃

almost certainly going to be nonregular.

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

R: Languages with Deciders

In addition to the RE requirements,
given any string w ∉ L, could you
prove that w ∉ L?

L₂
L₃

REG: Problems Solvable
with Finite Memory

Are there are finitely
many cases to check?

REG R RE

You can formally prove this by using the
Myhill-Nerode theorem. I highly recommend

it – it's good practice!

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

R: Languages with Deciders

In addition to the RE requirements,
given any string w ∉ L, could you
prove that w ∉ L?

L₂
L₃

REG: Problems Solvable
with Finite Memory

Are there are finitely
many cases to check?

REG R RE

So – what did we learn here?

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

R: Languages with Deciders

In addition to the RE requirements,
given any string w ∉ L, could you
prove that w ∉ L?

L₂
L₃

REG: Problems Solvable
with Finite Memory

Are there are finitely
many cases to check?

REG R RE

We've seen how to use our key intuition
for regular languages – they're languages
you can solve in finite space – to check

whether something is regular.

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

R: Languages with Deciders

In addition to the RE requirements,
given any string w ∉ L, could you
prove that w ∉ L?

L₂
L₃

REG: Problems Solvable
with Finite Memory

Are there are finitely
many cases to check?

REG R RE

With all that said and done, let's move
on to our last language here.

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

R: Languages with Deciders

In addition to the RE requirements,
given any string w ∉ L, could you
prove that w ∉ L?

L₂
L₃

REG: Problems Solvable
with Finite Memory

Are there are finitely
many cases to check?

REG R RE

While normally we've talked about
starting from the outside and moving

inward, for this language I think you can
probably see that this is going to be
decidable, so let's start it there.

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

R: Languages with Deciders

In addition to the RE requirements,
given any string w ∉ L, could you
prove that w ∉ L?

L₂
L₃

REG: Problems Solvable
with Finite Memory

Are there are finitely
many cases to check?

L₄ (?)

REG R RE

The question now is whether it's regular
or not.

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

R: Languages with Deciders

In addition to the RE requirements,
given any string w ∉ L, could you
prove that w ∉ L?

L₂
L₃

REG: Problems Solvable
with Finite Memory

Are there are finitely
many cases to check?

L₄ (?)

REG R RE

The answer is yes. Here's a number of
different ways to think about why.

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

R: Languages with Deciders

In addition to the RE requirements,
given any string w ∉ L, could you
prove that w ∉ L?

L₂
L₃

REG: Problems Solvable
with Finite Memory

Are there are finitely
many cases to check?

L₄

REG R RE

First, we can think about this from an
information perspective. To check whether
a string is in this language, we need to
keep track of how many a's there are

and how many b's there are…

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

R: Languages with Deciders

In addition to the RE requirements,
given any string w ∉ L, could you
prove that w ∉ L?

L₂
L₃

REG: Problems Solvable
with Finite Memory

Are there are finitely
many cases to check?

L₄

REG R RE

…but only up to a point. After we see
1,001 copies of either character, we know
that the string isn't in the language.

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

R: Languages with Deciders

In addition to the RE requirements,
given any string w ∉ L, could you
prove that w ∉ L?

L₂
L₃

REG: Problems Solvable
with Finite Memory

Are there are finitely
many cases to check?

L₄

REG R RE

This means that we just need to remember
how many a's and b's we've seen (within
the limits) and whether we're still reading

a's or b's.

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

R: Languages with Deciders

In addition to the RE requirements,
given any string w ∉ L, could you
prove that w ∉ L?

L₂
L₃

REG: Problems Solvable
with Finite Memory

Are there are finitely
many cases to check?

L₄

REG R RE

That means we only need a finite amount
of information to decide whether a

string is in the language, so using our
intuition for the regular languages, this

one willl be regular.

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

R: Languages with Deciders

In addition to the RE requirements,
given any string w ∉ L, could you
prove that w ∉ L?

L₂
L₃

REG: Problems Solvable
with Finite Memory

Are there are finitely
many cases to check?

L₄

REG R RE

Here's another approach we can take.

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

R: Languages with Deciders

In addition to the RE requirements,
given any string w ∉ L, could you
prove that w ∉ L?

L₂
L₃

REG: Problems Solvable
with Finite Memory

Are there are finitely
many cases to check?

L₄

REG R RE

How many strings are in this language?

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

R: Languages with Deciders

In addition to the RE requirements,
given any string w ∉ L, could you
prove that w ∉ L?

L₂
L₃

REG: Problems Solvable
with Finite Memory

Are there are finitely
many cases to check?

L₄

REG R RE

There's only 1,001 of them, corresponding
to all the different choices of n we can

make.

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

R: Languages with Deciders

In addition to the RE requirements,
given any string w ∉ L, could you
prove that w ∉ L?

L₂
L₃

REG: Problems Solvable
with Finite Memory

Are there are finitely
many cases to check?

L₄

REG R RE

As you proved on Problem Set 7, all
finite languages are regular. That means
that this language has to be regular.

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

R: Languages with Deciders

In addition to the RE requirements,
given any string w ∉ L, could you
prove that w ∉ L?

L₂
L₃

REG: Problems Solvable
with Finite Memory

Are there are finitely
many cases to check?

L₄

REG R RE

As a final option, we can think about this
in terms of DFA or regex design.

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

R: Languages with Deciders

In addition to the RE requirements,
given any string w ∉ L, could you
prove that w ∉ L?

L₂
L₃

REG: Problems Solvable
with Finite Memory

Are there are finitely
many cases to check?

L₄

REG R RE

You could imagine building a (huge)
regex for this language:

 ab aabb aaabbb … aε ∪ ∪ ∪ ∪ ∪ 1000b1000

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

R: Languages with Deciders

In addition to the RE requirements,
given any string w ∉ L, could you
prove that w ∉ L?

L₂
L₃

REG: Problems Solvable
with Finite Memory

Are there are finitely
many cases to check?

L₄

REG R RE

So that means that it's going to be
regular.

ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

R: Languages with Deciders

In addition to the RE requirements,
given any string w ∉ L, could you
prove that w ∉ L?

L₂
L₃

REG: Problems Solvable
with Finite Memory

Are there are finitely
many cases to check?

L₄

REG R RE ALL

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

L₁

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

R: Languages with Deciders

In addition to the RE requirements,
given any string w ∉ L, could you
prove that w ∉ L?

L₂
L₃

REG: Problems Solvable
with Finite Memory

Are there are finitely
many cases to check?

L₄

By now we've successfully placed all the
languages in to the Lava Diagram.

Woohoo!

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

R: Languages with Deciders

In addition to the RE requirements,
given any string w ∉ L, could you
prove that w ∉ L?

REG: Problems Solvable
with Finite Memory

Are there are finitely
many cases to check?

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

Let's do a quick recap of what all of the
different regions mean and how best

to think about them.

REG R RE ALL

L₁

L₂
L₃

L₄

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

R: Languages with Deciders

In addition to the RE requirements,
given any string w ∉ L, could you
prove that w ∉ L?

REG: Problems Solvable
with Finite Memory

Are there are finitely
many cases to check?

First, the RE languages. To check
whether a language is RE, ask yourself
whether, for any string in the language,
you could prove to someone else that

it's in the language.

REG R RE ALL

L₁

L₂
L₃

L₄

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

REG: Problems Solvable
with Finite Memory

Are there are finitely
many cases to check?

Next, the R languages. If that you
already know your language is in RE, you
can figure out whether it's in R by asking

whether, for any string not in the language,
you can prove it's not in the language.

REG R RE ALL

L₁

L₂
L₃

L₄

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

R: Languages with Deciders

In addition to the RE requirements,
given any string w ∉ L, could you
prove that w ∉ L?

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

Finally, the regular languages. Those are
the ones that you can solve given only

finite resources.

REG R RE ALL

L₁

L₂
L₃

L₄

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

R: Languages with Deciders

In addition to the RE requirements,
given any string w ∉ L, could you
prove that w ∉ L?

REG: Problems Solvable
with Finite Memory

Are there are finitely
many cases to check?

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

The more that you learn about these
languages, the more intuitions and nuances
you'll be able to use to help guide your

search.

REG R RE ALL

L₁

L₂
L₃

L₄

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

R: Languages with Deciders

In addition to the RE requirements,
given any string w ∉ L, could you
prove that w ∉ L?

REG: Problems Solvable
with Finite Memory

Are there are finitely
many cases to check?

L₁ = { ⟨M⟩ | M is a TM that accepts at least two strings }

L₂ = { ⟨M⟩ | M is a TM that accepts exactly two strings }

L₃ = { anbn | n ∈ ℕ and n > 1000 }

L₄ = { anbn | n ∈ ℕ and n ≤ 1000 }

Hopefully, this gives you a good
starting point for working through
Lava Diagram questions. Good luck!

REG R RE ALL

L₁

L₂
L₃

L₄

RE: Languages with Verifiers

Given any string w ∈ L, could
you prove that w ∈ L?

R: Languages with Deciders

In addition to the RE requirements,
given any string w ∉ L, could you
prove that w ∉ L?

REG: Problems Solvable
with Finite Memory

Are there are finitely
many cases to check?

Hope this helps!

Please feel free to ask
questions if you have them.

Did you find this useful? If
so, let us know! We can go

and make more guides like these.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150

